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THE FORMULATION OF SELECTED FREE BOUNDARY PROBLEMS

AS CONSERVATION LAWS

Joel C. W. Rogers

Laurel, Maryland, U.S.A.

1. Introduction and Examples

In this brief paper, we shall summarize some recent work on free

boundary problems which may also be considered as conservation laws.

This is by no means a review article, and at best it is a survey of cur-

rents of thought which have emerged in work in which the author has par-

ticipated, mostly in collaboration with others. This may explain the

rather parochial nature of the list of references at the end. The present

state of our knowledge is quite rudimentary, and it will be apparent to

the reader that conjectures considerably outnumber theorems. The subject

matter of this paper will be fairly broad; the price of this breadth will

be a lack of depth.

Generally speaking, a set of differential equations will be said to

be in conservation form if, by formal integration of the equations over a

region, one can obtain equations for the rate of change of the dependent

variables integrated over the region in terms of their values on the

boundary of the region and other quantities which are specified for the

probl em.

A typical example is the one-phase Stefan problem. Choosing units so

that the latent heat is 1 and the melting temperature is O, one may

i ,1



formulate the problem classically as the solution of

ut a Au , x nt) t 1 0 , (l.la)

u(x,t) xn(t)ana(t; 1 , t > , (l.lb)

u(x,t) - 0 x 4 n(t) , t > 0 (l.lc)

u(x,t) T- uo(x) x c RN , (1.ld)

where u is the energy per unit volume and

uo(x) >_ I x n(o) ,(1.1e)

u0 (x) - 0 x (o) (l.lf)

To complete the statement of the problem, one must indicate how the region

o(t) changes with time. The rate of change of n is determined by requiring

conservation of energy and noting that, with the units chosen, the flux of

u
energy into an from the interior of 0 is - -, and this must equal the fluxan

of material volume which has changed phase times the latent heat. Thus, If

v is the outward normal velocity of the boundary an(t),

v ut
an (t) (1.lg)

Since conservation of energy was invoked to complete the formulation

of problem (1.1), there is a certain logic to writing the problem directly

as a conservation law:

ut - Af(u) , (1.2a)

f(u) - max(u - 1,0) (1.2b)

u(t) F-o u0  . (1.2c)

Using Gauss's theorem, we see from (1.1c) that, if n Is bounded, i udx is

conserved. It is easy to check that the left-hand side of (1.2a) has a

singular part vds,, and the right-hand side has a singular part -a
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where 8M is a Dirac measure on D. Equating the two singular parts, we

recover (1.1g).

An advantage of the formulation (1.2) over (1.1) is that in (1.2) the

topology of the set {xlu(x) _ 1 does not appear, whereas (1.1g) is mean-

ingless if n is not defined on an(t) or -u is not bounded. A more subtle

advantage is that, by formulating (1.2) as the set of equations (1.1), we

are already making an assumption about the nature of the solution, and

such an assumption may be unwarranted. In (1.1), we assume that u has a

Jump from 1 to 0 at the free boundary, that is, that the front between

{xlu(x) _ 11 and {xlu(x) = 0) is sharp. However, in the inhomogeneous

problem

ut A af(u) + a(x) (1.3a)

where a(x) > 0 Is bounded and

supp a n supp u0 = , (1.3b)

there will not be a sharp front. Instead, for a period of time there will

be a diffuse boundary between {xlu(x,t) > 11 and {xlu(x,t) - 01, and any

attempt to state the problem in the form (1.1) will be doomed to failure.

A different example is afforded by the hyperbolic conservation law

ut + V . (f(u))-o , (1.4a)

u(x,t) t;ri Uo(x) . (1.4b)

Generally, solutions of this equation will not be continuous. For discon-

tinuous solutions the singular parts of the terms on the left-hand side of

(1.4) will have to cancel one another. Define

± u (x,t) = lim supyx ± u(yt) (1.5)

and

O(t) a {xlu+(xt) - u'(xt) >} . (1.6)
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Then the balanctng of singularities gives for the velocity v of an(t),

v(u+(x.t) - u'(x,t)) - f(u+(x.t)) - f(u'(xt)). (1.7)

A given differential equation corresponds to a multitude of

conservation laws, and the solution of the equation which is considered

acceptable is critically dependent on the quantity assumed to be conserved.

For example, the equation

ut +uu x .0 (1.8a)

may be written as

u + (U 2 - (1.8b)

or

Wu)t + .0 (1.8c)
t x

In (1.8b) the conserved quantity is Judx. In (1.8c) it Is J u2dx. The

general solutions of the two conservation laws are quite different.

2. Numerical Solution of Some Simple Conservation Laws

One naturally looks for algorithms which rigorously preserve the

required Invariants of the conservation laws, and in addition have the

feature that they generate sufficiently smooth solutions of the conserva-

tion laws with satisfactory accuracy. For the hyperbolic conservation law

(1.4), such an algorithm has been studied (Ref. 5). To explain how the

algorithm works, we introduce the sets

Eu(G) E (xu(x) P 4) , a 0 , (2.1a)

Eu(s) a {xlu(x) a) , a < 0 . (2.1b)

In addition, for 1 4 1 _ N, we define the operators St(h) by

(St(h)u)(x) - u(x - he,) , (2.2)
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where e1 is a unit vector in the direction of the xt-axis. The algorithm

generates a collection of functions un(x), n 0 0, 1, 2, .*, dependent on

a parameter T, called the time step. The purpose is to approximate u(x,t)

by un(x) for T- t/n sufficiently small. un(x) is given by

un(x) * Gnuo(x) (2.3a)

where

~-N
Gu St(f'(a) e.iT)x(Eu (a))d

1i=i

- J n Si(f'(a) • eit)x(Eu(a))da . (2.3b)
-=o 1=1

Here x(E) is the characteristic function of the set E. For a problem in

one space dimension, under mild regularity assumptions on uo and some

assumptions on f (e.g., f convex), the algorithm (2.3) has been shown to

generate an approximate solution with an L1 error 0(T) (Ref. 5).

A numerical approach to a more general class of conservation laws

which includes (1.2) and the one-dimensional version of (1.4) has been

presented (Ref. 3). One considers the problem

ut + Lf(u) = 0 , (2.4a)

u(x,t) go- uo(x) ,(2.4b)

where

0 < f(u) - f(v) 1_u - v If u > v (2.4c)

and L is a linear operator such that the semi-group

S(h) e-"hL is contractive in Li and L . (2.4d)

The numerical method generates functions un(x), supposed to

approximate u(x,nr), according to the prescription
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un(x) - Fnu 0 (x) , (2.5a)

Fu- u - f(u) + S(r)f(u) . (2.5b)

The functions un(x) have been shown to converge to u(x,t) as -t/n -1 0

(Ref. 3). For the special case of problem (1.2) in one space dimension,

the Li error In the approximate solution, under mild assumptions regard-igterglrtofuohsbe shown to be0 I Rf,).
Comparison with the procedure (2.3) suggests that there might be some

theoretical advantage in solving (2.4) by considering the algorithm

u n(x) - G nuo(x) (2.6a)

where

Gu(x) J S(f'(a)T)X(E (a))d"- S(f'(M)T)X(Eu(cs))da [2.6b)

At this point, the convergence of un(x) in (2.6a) to u(x,t) as T = t/n 1 0

is only conjectured. It may be of interest to note that, upon use of the

interpolation formula

S(f'(U)T) - I + f'(0)(S(T) - 1) , (2.7)

(2.6) goes over to (2.5).

3. Function Spaces Approximate to Free Boundary Problems

A conservation law may strongly suggest a natural function space in

which to search for a solution of the associated free boundary problem.

This is especially true when the conserved quantity can be thought of as

a norm for a large class of solutions. 73e space L1 has already figured

in error estimates for approximate solutions of (1.2) and (1.4).

In particular, for the conservation law (2.4a). it follows from (2.4c)

and (2.4d) that the operator F is contractive in L1 . Further, the
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algorithm (2.5) is stable in both L1 and LC. In cases of importance, F

is stable in still other function spaces. For example, If S(h) not only

satisfies (2.4d), but has the property that

(S(h)u)(x) - J G(x';h)u(x + x')dx' , (3.1)

one may find a whole class of function spaces In which F is stable. One

of the most interesting is the space with the norm

Hull J .() Id (3.2)

Using this space and the algorithm (2.5), one may deduce immediately

bounds on the measures of surfaces of discontinuity of solutions of Stefan

problems and solutions of model hyperbolic free boundary problems in terms

of the initial data. More generally, one may introduce function spaces

whose norms are constructed in terms of capacities of sets Eu (o). Such

spaces and others, and their use in studying the regularity of solutions of

the conservation law (2.4), are treated in more detail elsewhere (Ref. 4).

4. The Formal Extension to Systems of Conservation Laws

One might consider u and f(u) to be n-vectors, in which case (2.4)

becomes a system of n conservation laws. The numerical scheme (2.5) still

makes sense for this case, and it is at least consistent with the differ-

ential equation. If L has the property (2.4d), and if in addition

Vu e Rn we have

Iu - f(u)lI + If(u)l, - lull (4.1)

then we get stability of the operator F in LI:

lullL1" J Iuldx (4.2)
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However, the contractiveness of F in L1 , which followed so easily for the

case of a single equation, does not necessarily follow for a system of

equations. In addition it appears that, of all the spaces alluded to

above, with norms constructed in terms of capacities of the E u(m), the

only space In which we can expect to get IFI( :S 1, except for trivial

cases, is L1.

A second example is afforded by Burgers' equation in N dimensions, by

which we mean the laws of mass and momentum conservation of a perfectly

compressible inviscid fluid (no pressure). Burgers' equation is

Pt +  * V (pu) = 0 , (4.3a)

(Pu)t + v • (puu) - 0 , (4.3b)

P(x~t) 7-6. POWx (4.3c)

(pU)(X,t) f - (PU)O(X) .(4.3d)

A formal algorithm seeks the solution of (4.3) by means of a "Boltzmann

equation" approach (Refs. 6, 8). The method is similar to the method of

(2.3). One writes n
GU (pUo (4.4a)

where G is defined by

~ jJ~ siNv * -ei)(p6(v - u))dv ) (4.4b)
vp1/ SI(v • eiT))(p6(v - u))dv

and S1 is given in (2.2). One can show that solutions of (4.3) for which

u is sufficiently smooth, uniformly in time, are given exactly by (4.4).
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However, from the point of view of free boundary problems, it is the

nonsmooth solutions which are of primary interest.

A further formal extension of the methods described above would be to

constrained systems of conservation laws. By these, we mean simply con-

servation laws for which the solution is required to lie in some subset of

a function space, with the corresponding differential equations holding

for solutions in the Interior of that subset. For .xample, the equations

of inviscid hydrodynamics may be described succinctly as the solution of

Burgers' equation (4.3) subject to the one-sided density constraint p < 1

(Ref. 6). The corresponding free boundary problem is the water wave

problem.

In a stepwise solution of a constrained conservation law, it is most

natural to let each step consist of two procedures: First, the solution

for a step of the corresponding unconstrained conservation law, as

described heretofore, and then the satisfaction of the constraint. In the

satisfaction of the constraint, any numerical procedure should carefully

conserve the required Invariants of the system. For example, in hydro-

dynamics the requirements imposed by the one-sided constraint on the

density are met by solving another conservation law, in this case the one-

phase Stefan problem (Refs. 6, 8).

Another example of a constrained conservation law is the "diffusion-

consumption" problem (Ref. 1). Here one solves the conservation law

ut A au - 1 , (4.5a)

u(x,t) t uO(x) , (4.5b)

9



subject to the constraint

u(x.t) • 0 (4.5c)

In some cases it may be fruitful to consider the specification of

conditions on a function at the boundary of a finite region Q c RN as the

imposition of a constraint on a conservation law which is formulated

throughout RN, and to solve the resulting constrained conservation law

stepwise, in accordance with the procedure outlined above.

5. Problems Associated with Coupled Equations in
Several Space Dimensions

The free boundary problems of mechanics which have elicited the

greatest interest have involved coupled equations in several space dimen-

sions. The simplest of these is the water wave problem described above.

A slightly more difficult problem 's the transonic flow problem, which can

be considered to be given by the conservation laws

Pt + V. (pu) = 0 , (5.1a)

(Pu)t + V • (Ouu) = - Vp(p) , (5.1b)

where P(p) is specified. The free boundary here is called the sonic

surface. A more elaborate system of conservation laws, in which another

dependent variable (entropy) and an extra conservation law (for energy) are

added, describes the flow of an inviscid compressible fluid, and the

corresponding free boundaries are shock waves.

For each of these sets of conservation laws, which may be thought of

as progressively enriched versions of Burgers' equation, similar questions

as to the well-posedness of the initial value problem arise. We noted in

the last section that, although we can write down formal algorithms for
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"solving" these conservation laws, the variety of spaces in which we get

stability of the algorithms, and thus strong regularity results, diminishes

drastically on passing from a single conservation law to a system of con-

servation laws. That the proof of strong regularity results for such

systems may not be just difficult, but in fact impossible, is strongly

suggested by the irregularities actually observed in the physical world,

and associated with the names of Helmholtz instability, Taylor instability,

fingering of salt water-fresh water interfaces and oil-water interfaces,

and turbulence. All these phenomena are associated with systems of equa-

tions in more than one space dimension. Since Burgers' equation is at the

core of all these sets of conservation laws, it may not be unreasonable to

expect limitations on the regularity of solutions of Burgers' equation to

have some relevance to the solutions of the other systems. In the case of

Burgers' equation, it would appear that the initial value problem is not

well posed in the classical sense of Hadamard, and that it may be neces-

sary to go to a concept of well-posing in a stochastic sense. In this

case it may be that a given initial state will evolve stochastically after

a finite time (Ref. 7).

Other systems of conservation laws in higher dimensions which are not

built around Burgers' equation also appear to have highly irregular solu-

tions. As a prototypical example, we might consider the system

ut M Af(u) . (5.2)

For example, equations like (5.2) have been used to describe phase changes

in materials where the melting temperature depends on the concentration of

a solute. In some of the models proposed, u has two components,

11



representing concentration of solute and energy density. It would

appear that the free surfaces separating phases are highly unstable, and

that this instability is reflected in the formation of highly Irregular

boundaries containing dendrites (Ref. 9).
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